Cellular mechanisms of hippocampal gamma frequency oscillations

Authors

  • Ekaterine Kipiani Teaching University Geomedi, Tbilisi, 0114, Georgia Author
  • Maia Barbakadze Teaching University Geomedi, Tbilisi, 0114, Georgia Author
  • Zurab R. Tsetskhladze Scientific-Research Institute of Experimental and Clinical Medicine, Teaching University Geomedi, Tbilisi, 0114, Georgia Author https://orcid.org/0000-0003-0774-0020

DOI:

https://doi.org/10.56580/GEOMEDI0002

Keywords:

Gamma oscillations, Interneurons, hippocampus, perisomatic, O-LM

Abstract

Gamma oscillations are known as cognitive rhythms due to their occurrence during the cognitive functions such as working memory, episodic memory, memory encoding and retrieval, sensory binding and attention. Gamma oscillations can be easily transferred into epileptic activity. Altered gamma rhythms are seen during the brain disorders such as schizophrenia, dementia and autism. Hence, studying the mechanisms of gamma rhythms is of great importance. Recent discoveries revealed new details of gamma oscillations. The classical view about the parvalbumin containing perisomatic basket cells that drives the gamma oscillation is valid for CA3 region of hippocampus but it may not be so for CA1 region. However, medial ganglionic eminence (MGE) derived axo-axonic cells action potential discharge follows the gamma rhythm in CA1 together with caudal ganglionic eminence (CGE) derived trilaminar and back-projecting interneurons. Oriense-Lacunosum-Moleculare (O-LM) cells appear to have dual origine and can be modulated by gamma frequency. Using the modern technologies and relying on the current knowledge and new insights about neuronal elements in gamma frequency oscillation will help the scientists to study the mechanisms of cognitive rhythms in more details.

Metrics

Metrics Loading ...

References

Buzsáki, G. (2006). Rhythms of the brain. Oxford University press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001

Buhl EH, Tamás G, Fisahn A. (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol. Nov 15;513 (Pt 1):117-26.

Chittajallu R, Craig MT, McFarland A, Yuan X, Gerfen S, Tricoire L, Erkkila B, Barron SC, Lopez CM, Liang BJ, Jeffries BW, Pelkey KA, McBain CJ. (2013) Dual origins of functionally distinct O-LM interneurons revealed by differential 5-HT(3A) R expression. Nat Neurosci. Nov;16(11):1598-607. doi: 10.1038/nn.3538. Epub 2013 Oct 6.

Colgin LL. (2016) Rhythms of the hippocampal network. Nat Rev Neurosci. Apr;17(4):239-49. doi: 10.1038/nrn.2016.21. Epub 2016 Mar 10. Review.

Dinocourt C, Petanjek Z, Freund TF, Ben-Ari Y, Esclapez M. (2003) Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol. May 12; 459(4): 407-25.

Engel AK, Fries P, Singer W. (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. Oct;2(10):704-16. Review.

Fano S, Behrens CJ, Heinemann U. (2007) Hypoxia suppresses kainate-induced gamma-oscillations in rat hippocampal slices. Neuroreport. Nov 19;18(17):1827-31.

Fell J, Axmacher N. (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci. Feb;12(2):105-18. doi: 10.1038/nrn2979. Review.

Forro T, Valenti O, Lasztoczi B, Klausberger T. (2015) Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations. Cereb Cortex. May;25(5):1228-40. doi: 10.1093/cercor/bht316. Epub 2013 Nov 24.

Freeman WJ. (1968) Relations between unit activity and evoked potentials in prepyriform cortex of cats. J Neurophysiol. May; 31(3): 337-48.

Gloveli T, Dugladze T, Saha S, Monyer H, Heinemann U, Traub RD, Whittington MA, Buhl EH. (2005) Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. J Physiol. Jan 1;562(Pt1):131-47. Epub 2004 Oct 14.

Hájos N, Katona I, Naiem SS, MacKie K, Ledent C, Mody I, Freund TF. (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci. Sep;12(9):3239-49.

Hájos N, Pálhalmi J, Mann EO, Németh B, Paulsen O, Freund TF. (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci. Oct 13;24(41):9127-37.

Hilscher MM, Nogueira I, Mikulovic S, Kullander K, Leão RN, Leão KE.( 2019) Chrna2-OLM interneurons display different membrane properties and h-current magnitude depending on dorsoventral location. Hippocampus. Dec;29(12):1224-1237. doi:10.1002/hipo.23134. Epub 2019 Jul 13.

Kipiani E. (2009) OLM interneurons are transiently recruited into field gamma oscillations evoked by brief kainate pressure ejections onto area CA1 in mice hippocampal slices. Georgian Med News. Feb;(167):63-8.

Kipiani E. Characteristics of gamma oscillations induced by kainite pressure ejection on CA1 hippocampus of mice brain slices in submerged chambers. (2018) Georgian Med News. 2018 May;(278):158-162.

Klausberger T, Somogyi P. (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. Jul 4;321(5885):53-7. doi:10.1126/science.1149381. Review.

Klausberger T, Magill PJ, Márton LF, Roberts JD, Cobden PM, Buzsáki G, Somogyi P. (2006) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature. 2003 Feb 20; 421(6925): 844-8. Erratum in: Nature. Jun 15;441(7095): 902.

Leão RN, Mikulovic S, Leão KE, Munguba H, Gezelius H, Enjin A, Patra K, Eriksson A, Loew LM, Tort AB, Kullander K. (2012) OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci. Nov;15(11):1524-30. doi: 10.1038/nn.3235. Epub 2012 Oct 7. PubMed [citation]

LeBeau FE, Towers SK, Traub RD, Whittington MA, Buhl EH. (2002) Fast network oscillations induced by potassium transients in the rat hippocampus in vitro. J Physiol. Jul 1;542(Pt 1):167-79.

Lisman JE, Idiart MA. (1995) Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. Mar 10;267(5203):1512-5.

Llinás R, Ribary U, Contreras D, Pedroarena C. (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci. Nov 29;353(1377):1841-9. Review.

Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P. (2000) Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. J Physiol. Apr 1;524 Pt 1:91-116. Erratum in: J Physiol 2000 Nov 1;528(Pt 3):669.

Mann EO, Radcliffe CA, Paulsen O. (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol. Jan 1;562(Pt 1):55-63. Epub 2004 Nov 11. Review.

Mann EO, Paulsen O. (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci. Jul;30(7):343-9. Epub 2007 May 25. Review.

Mikulovic S, Restrepo CE, Hilscher MM, Kullander K, Leão RN. (2015) Novel markers for OLM interneurons in the hippocampus. Front Cell Neurosci. Jun 2; 9: 201. doi:10.3389/fncel.2015.00201. eCollection 2015. No abstract available.

Nyhus E, Curran T. (2010) Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev. Jun; 34(7): 1023-35. doi:10.1016/j.neubiorev.2009.12.014. Epub 2010 Jan 6. Review.

Singer W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 55:349-74. Review.

Tort AB, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ. (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A. Aug 14;104(33):13490-5. Epub 2007 Aug 6.

Uhlhaas PJ, Singer W. (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. Oct 5;52(1):155-68. Review.

Uhlhaas PJ, Pipa G, Neuenschwander S, Wibral M, Singer W. (2011) A new look at gamma? High- (>60 Hz) γ-band activity in cortical networks: function, mechanisms and impairment. Prog Biophys Mol Biol. Mar;105(1-2):14-28. doi:10.1016/j.pbiomolbio.2010.10.004. Epub 2010 Oct 27.

Vreugdenhil M, Toescu EC. (2005) Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience.132(4):1151-7.

Wang XJ. (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010 Jul;90(3):1195-268. doi: 10.1152/physrev.00035.2008. Review.

Whittington MA, Cunningham MO, LeBeau FE, Racca C, Traub RD. (2011) Multiple origins of the cortical γ rhythm. Dev Neurobiol. Jan 1; 71(1): 92-106. doi:10.1002/dneu.20814. Review.

Whittington MA, Traub RD, Jefferys JG. (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. Feb 16; 373(6515): 612-5.

Wójtowicz AM, van den Boom L, Chakrabarty A, Maggio N, Haq RU, Behrens CJ, Heinemann U. (2009) Monoamines block kainate- and carbachol-induced gamma-oscillations but augment stimulus-induced gamma-oscillations in rat hippocampus in vitro. Hippocampus. Mar; 19(3): 273-88. doi: 10.1002/hipo.20508.

Downloads

Published

2023-06-11

Issue

Section

Articles

How to Cite

1.
Kipiani E, Barbakadze M, Tsetskhladze ZR. Cellular mechanisms of hippocampal gamma frequency oscillations. MIMM. 2023;23(1):26-36. doi:10.56580/GEOMEDI0002

Most read articles by the same author(s)